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Introduction to Information Theory

Lecture 12

Lecturer: Haim Permuter Scribe: Tom Galili

I. VARIATION INFERENCE

The objective of Variation Inference is to estimate P (zm|xn),

P (zm|xn) = P (zm, xn)

P (xn)
=

P (zm)P (xn|zm)∫
P (zm)P (xn|zm) dzm

(1)

• zm - latent (hidden)

• xn - observation evidence

Notice that the estimation of P (zm|xn) is not trivial, therefore we simplify the term

arg min
q(zm)∈Q

D((qzm)||P (zm|xn))
(a)
= argminEq(zm)[log q(z

m)]− Eq

[
log

P (zm, xn)

P (xn)

]
(b)
= argminEq[log q(z

m)]− Eq[logP (z
m, xn)] + logP (xn)

(c)
= argmin(−ELBO + logP (xn)) (2)

−ELBO = Eq[log q(z
m)]− Eq[logP (z

m, xn)]

(d)
= Eq[log q(z

m)]− Eq[log p(z
m)]− Eq[logP (x

n|zm)]

= Eq[− logP (xn|zm)] +D(q(zm)||P (zm)) (3)

where

(a) follows from the definition of divergence.

(b) follows from the logarithm rules.
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(c) follows from the definition of evidence Lower Bound (ELBO) as defined in the

previous lectures.

(d) follows from conditional probability.

Note that P (zm) is the prior probability and q(zm) ≈ P (zm|xn) is the posterior probability

(we want to estimate) of the latent space given the evidence. First interpretation: find

maximum, we want to get as close as possible to the prior and on the other hand the

probability of q(zm) will be greater as zm gives more information about xn:

max(E[log(P (xn|zm))]−D(q(zm)||P (zm))) (4)

Second interpretation: MLD - minimum description length: Description of xn using zm

with as few as possible bits.

II. AUTO ENCODER (AE)

AutoEncoders are unsupervised learning models. The general idea of Auto Encoders

consists of setting an encoder and a decoder as neural networks and learning the best

encoding-decoding scheme using an iterative optimization process.[1]

Fig. 1. Illustration of an Auto Encoder

In this way, the architecture creates an information bottleneck for the data that ensures

only the main structured part of the information, with which it can be restored exactly

well, can go through and be reconstructed. Therefore, we would like to use dimension
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reduction (feature reduction). In many cases, the data you want to analyze has a high

dimension, which means that each sample has a large number of features. For the most

part, not all characteristics are equally significant. Because it is difficult to analyze data

from a high dimension and build models for such data, in many cases we will try to

reduce the dimension of the data with as little information loss as possible. As illustrated

in Fig. 1, after the encoder part of the neural network we get z = e(x) which is the

latent vector of the input, characterized by a lower dimension than the data, represented

by the important features to be reconstructed in the encoder.

The AE model objective is a minimization of the recovery error between the input data

and the reconstructed output data to be as small as possible,

Loss = ||x− x̂||2 = ||x− d(z)||2 = ||x− d(e(x))||2 (5)

If the equality x = d(e(x)) holds then no information was lost in the encoder-decoder

process. On the other hand, if x 6= d(e(x)) then some information is lost due to the

dimension reduction and the complete reconstruction of the encoded information is not

possible in the decoder.



12-4

III. VARIATIONAL AUTO ENCODER (VAE)

Unlike AE which takes data and performs dimension reduction, VAE [3] determines a

prior distribution to the latent space z, for example, Gaussian distribution z ∼ N (0, I) ,

when I - Identity covariance matrix. The encoder network is trained to receive data x and

output µ(x), σ(x) parameters of z (z ∼ N (µx, σx) ), in order to minimizing as much as

possible the distance between P (z) and P (z|x). Then sample vectors from z|x (given by

the parameters calculated in the encoder) and pass them through the decoder to produce

parameters of the P (x|z) [1] [2].

Fig. 2. Illustration of Variational Auto Encoder

It is important to mention that in comparison to the AE decoder part which uses for

the training process only, the VAE decoder is important as the encoder since it uses to

generate new data at inference time and to make the whole Variational Auto Encoder

model to a generative model.

Fig. 3. Graphical model of the data generation process
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Lets derived the loss function of VAE, first define the link between the encoder and the

decoder as

P (z|x) (a)
=

P (x|z)P (z)
P (x)

(6)

Where

(a) follows from the Bayes theorem.

P (z|x) describes the distribution of the encoded variable given the input data.

P (x|z) describes the distribution of the decoded variable given the encoded one.

The objective is to approximate P (z|x) by a Gaussian distribution qx(z) whose mean

and covariance are defined by two functions, g and h, of the parameter x.

P (x|z) ∼ N (f(z), cI) , c > 0

P (z) ∼ N (0, I)

qx(z) ∼ N (g(x), h(x)) (7)

We are looking for the optimal g∗ and h∗ such that

(g∗, h∗) = argmin
g,h

D((qx(z))||P (z|x))

(a)
= argmin

g,h
[Ez∼qx(z)(log qx(z))− Ez∼qx(z)

(
log

P (x|z)P (z)
P (x)

)
]

(b)
= argmin

g,h
[Ez∼qx(z)(log qx(z))− Ez∼qx(z)(logP (x, z))]

= argmin
g,h

[Ez∼qx(z)(log qx(z))− Eq(logP (z))− Eq(logP (x|z))]

= argmin
g,h

D(q||p)− Eq(logP (x|z)) = argmin
g,h

(−ELBO) (8)

Where

(a) follows from the definition of divergence and Bayes theorem.

(b) follows from the fact that P (x) and q are independents.Thus, P (x) Considered a

constant and doesn’t affect.

We know that
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P (x|z) ∼ N (f(z), cI) (9)

P (x|z) = 1√
2πc

e
−(x−f(z))2

2c , P (z) ∼ N (0, I) (10)

Thus,

(g∗, h∗) = argmin
g,h

Ez∼qx(z)

[
(x− f(z))2

2c

]
+D(N (g(x), h(x)) ,N (0, I) ) (11)

Now, by the Maximum likelihood principle,

maxf (Ez∼qx(z)(log(P (x|z))) = maxf (Ez∼qx(z)[log(N (f(z, cI)) ])

= maxf (Ez∼qx(z)

[
−(x− f(z))2

2c

]
) (12)

Gathering all the pieces together, we are looking for optimal f ∗, g∗ and h∗ such that

(g∗, h∗, f ∗) = argmin
g,h,f

Ez∼qx(z)

[
(x− f(z))2

2c

]
+D(N (g(x), h(x)) ,N (0, I) ) (13)

In Eq. (13), we get two terms: The first one for the reconstruction of x using the decoder

part, and the second term use the KL divergence to approximating the posterior P (z|x)

to be close to the prior probability P (z). The overall architecture is then obtained

by concatenating the encoder and the decoder parts and we can use gradient descent

optimization to find the optimal parameters of the VAE encoder and decoder and the loss

function is well defined as

Loss = Ez∼qx(z)

[
(x− f(z))2

2c

]
+D(N (g(x), h(x)) ,N (0, I) ) (14)

The second term can also be treated as a regularisation term given by the KL divergence

between two Gaussian distributions which helps the VAE model’s encoder approximation
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of the posterior probability to be close to the prior probability (which is a standard

Gaussian). We can also notice the constant c that rules the balance between the two

previous terms. When c is bigger, we assume a high variance around f(z) for the

probabilistic decoder of the VAE, and we are more like to favor the regularisation term

over the reconstruction term. Opposite stands if c is low.

A. Reparametrization Trick

We note that we still need to be very careful about the way we sample from the

distribution returned by the encoder during the training. The sampling process has to be

expressed in a way that allows the error to be backpropagated through the network to

compute the gradients for the Gradient Descent process as part of the training. Thus, the

reparametrization trick [1] is used as illustrated in Fig. 4 to make the gradient descent

possible despite the random sampling that occurs halfway through the architecture (after

the encoder). Using the fact that z is a random variable following a Gaussian distribution

with g(x) (mean) and h(x) (covariance) then it can be expressed as

z = g(x) + ζh(x) , ζ ∼ N (0, I) (15)

In this approach the whole process becomes deterministic - sample ζ in advance and then

only remains to schematically calculate the spread of the value in the network.

Fig. 4. Illustration of reparametrization trick
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